

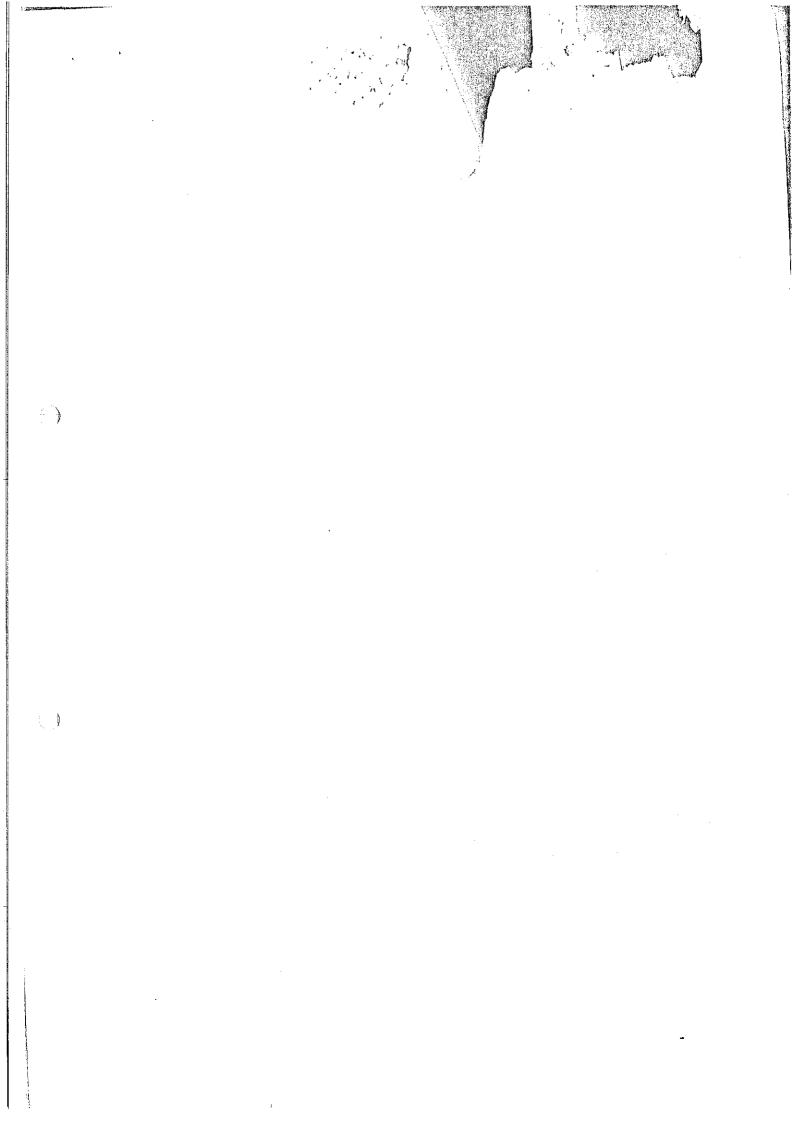
higher education & training

Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

T540(E)(J22)T AUGUST 2010

NATIONAL CERTIFICATE

ELECTROTECHNICS N6


(8080096)

22 July (X-Paper) 09:00 - 12:00

REQUIREMENTS: Graph paper

Calculators may be used.

This question paper consists of 5 pages and a 5-page formula sheet.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE ELECTROTECHNICS N6 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Start each question on a NEW page.
- 5. Keep subsections of questions together.
- 6. Round ALL calculations off to THREE decimal places.
- 7. Use the correct symbols and units.
- 8. Write neatly and legibly.

QUESTION 1

1.1	Explain how the speed of a DC shunt motor may be changed to the following:			
	1.1.1	Above normal speed		(2)
	1.1.2	Below normal speed		(2)
1.2	The following results were obtained from a Hopkinson test on two identical DC shunt machines:			
	Terminal Input curr Motor fiel Generato	e resistance of each machine voltage of each machine rent from the supply ld current or field current mature current	= 0,03 ohms = 250 V = 50 A = 4,8 A = 4 A = 370 A	
	Calculate	the efficiency of the machine	operating as a generator, assuming:	
	1.2.1	Equal iron and friction losses		(10)
÷	1.2.2	Equal efficiencies		(2) [16]
QUEST	ION 2		·	
A voltage represented by: $e = 150 \text{ Sin } 314t + 50 \text{ Sin } (942t + 60^\circ)$ volts is applied to a circuit consisting of a resistor of 15 ohms in parallel with an inductor of 32 millihenry and negligible resistance.				

Calculate the following:

2.1	An expression for the instantaneous value of the current	(10)
2.2	The RMS value of the current and voltage	(4)
2.3	The power absorbed by the circuit	(2)
2.4	The energy dissipated in the circuit during 3 milli-seconds	(1) [17]

QUESTION 3

3.1 What are the effects of harmonic voltages in transformers? (3)

A 165 kVA single-phase transformer has a voltage ratio of 3 300/660 V. The 3.2 primary short circuit voltage is 358,5 V and the short circuit power is 3,875 kW. The iron loss is 900 W and the power factor is 0,8 lagging. Calculate the following: The equivalent resistance and reactance referred to the primary 3.2.1 (7)The percentage full load voltage regulation 3.2.2 (2)3.2.3 The efficiency at half load (2)3.2.4 The maximum efficiency [17] **QUESTION 4** What is meant by the coil span factor of an alternator? 4.1 (2)A 12 kV, three-phase, 2 MVA, star-connected alternator operates at a power 4.2 factor of 0,8 lagging and has a synchronous impedance of (1,2 + j8) ohms. Calculate the following: The open-circuit line voltage to which the machine must be excited 4.2.1 to deliver full-load (7) The regulation of the alternator 4.2.2 (2) The load angle at which the machine operates 4.2.3 (1)[12] QUESTION 5 5.1 Draw the circle diagram of a 30 kW, 400 V, 50 Hz, 4-pole, star-connected, three-phase induction motor, given the following additional data: No-load test: 20 A 400 V 3 464 W Locked rotor test: 80 A 200 V 9 700 W The stator resistance per phase is 0,2 ohms. Use scale 1 cm = 8 A (10)

			٠.		
5.2	Determine the following from the circle diagram:				
	5.2.1	The line current at maximum torque	(1)		
	5.2.2	The power factor at maximum torque	(1)		
	5.2.3	The efficiency at maximum torque	(1)		
	5.2.4	The slip at maximum torque	(1)		
	5.2,5	The rotor copper losses at standstill.	(1) [15]		
QUESTI	ON 6				
0,7 lagg	ing. If the	tor is connected in parallel to a load of 1 000 kW at a power factor of combined load has a power factor of 0,85 lagging and the			

6.1	The kVA	(5)
6.2	The kVAr	(1)
6.3	The power factor	(1)

QUESTION 7

synchronous motor:

Apply the π method to calculate the sending end voltage, current and power factor of a 200 km transmission line. The line delivers a three-phase load of 20 MW at a power factor of 0,8 lagging and a line voltage of 132 kV, 50 Hz.

Each conductor has a resistance of 0,3 ohms/km, an inductance of 1,95 millihenry/km and a capacitance of 0,0093 micro-farad/km to neutral.

IMPORTANT: Draw the π method circuit diagram. [16]

TOTAL: 100

ELECTROTECHNICS N6

GS-MASJIENE

DC MACHINES

$$E = V - Ia Ra$$

$$\frac{E_1}{E_2} = \frac{N_1 \Phi_1}{N_2 \Phi_2}$$

$$\frac{T_1}{T_2} = \frac{I_1 \Phi_1}{I_2 \Phi_2}$$

SPOEDBEHEER

$$E = V - Ia \left(\frac{R Rse}{R + Rse} + Ra \right)$$

$$E = V - Ia Ra - Ise Rse$$

SPEED CONTROL

TOETSING DIREKTE METODE

$$\eta = \frac{2\pi Nr (W - S)}{60 \ IV}$$

TESTING DIRECT METHOD

SWINBURNE-METODE

$$\eta_{motor} = \frac{IV - (Ia^2Ra + Ia_o V + Is V)}{IV}$$

$$\frac{\eta}{generator} = \frac{IV}{IV + Ia^2 Ra + Ia_a V + Is V}$$

SWINBURNE METHOD

HOPKINSON-RENDEMENTE DIESELFDE

$$\eta = \sqrt{\frac{I_1}{I_1 + I_2}}$$

HOPKINSON EFFICIENCIES THE SAME

YSTER-VERLIES

IRON LOSS

$$= I_2 V - \{ (I_1 + I_3)^2 Ra + (I_1 + I_2 - I_4)^2 Ra + (I_3 + I_4) V \}$$

= C

$$\frac{\eta}{generator} = \frac{I_1 V}{I_1 V + (I_1 + I_3)^2 Ra + I_3 V + \frac{C}{2}}$$

$$\frac{\eta}{motor} = \frac{(I_1 + I_2) V - \left\{ (I_1 + I_2 - I_4)^2 Ra + I_4 V + \frac{C}{2} \right\}}{(I_1 + I_2) V}$$

WS-BELASTING
STERSTELSELS

$$\overline{I}_R = \frac{V \, \underline{o}^{\circ}}{Z_{RN} \, \underline{\phi_1}}$$

$$\overline{I}_{y} = \frac{V \mid -120^{\circ}}{Z_{YN} \phi_{2}}$$

$$\overline{I}_B = \frac{V \mid 120^{\circ}}{Z_{BN} \ \underline{\phi_3}}$$

$$Z_{BN} \frac{\phi_3}{I_{N} = I_{N} + I_{N} + I_{N}}$$

$\overline{I}_N = \overline{I}_R + \overline{I}_B + \overline{I}_Y$

BALANCED CIRCUIT

GEBALANSEERDE KRING

$$\overline{I}n = 0$$

DELTASTELSELS

$$\overline{I}_{RY} = \frac{\overline{V}_{RY}}{\overline{Z}_{RY}} \overline{I}_R = \overline{I}_{RY} - \overline{I}_{BR}$$

$$\overline{I}_{YB} = \frac{\overline{V}_{YB}}{\overline{Z}_{YB}} \ \overline{I}_Y = \overline{I}_{YB} - \overline{I}_{RY}$$

$$\overline{I}_{BR} = \frac{\overline{V}_{BR}}{\overline{Z}_{BR}} \ \overline{I}_{B} = \overline{I}_{BR} - \overline{I}_{YB}$$

DRIEDRAAD-STELSELS

$$V_{sn} = \frac{\frac{\overline{V}_{an}}{\overline{Z}_1} + \frac{\overline{V}_{bn}}{\overline{Z}_2} + \frac{\overline{V}_{cn}}{\overline{Z}_3}}{\frac{1}{\overline{Z}_1} + \frac{1}{\overline{Z}_2} + \frac{1}{\overline{Z}_3}}$$

$$\overline{V}_{aN} = \overline{V}_{aS} + \overline{V}_{sN}$$

$$\overline{V}_{bN} = \overline{V}_{bS} + \overline{V}_{sN}$$

$$\overline{V}_{cN} = \overline{V}_{cS} + \overline{V}_{sN}$$

$$\overline{I}_a = \frac{\overline{V}_{aS}}{\overline{Z}_1}$$

$$\overline{I}_B = \frac{\overline{V}_{bS}}{\overline{Z}_2}$$

$$\overline{I}_C = \frac{\overline{V}_{cS}}{\overline{Z}_3}$$

KOMPLEKSE GOLFVORMS

$$e_1 = E_m \sin \omega t$$

COMPLEX WAVE FORMS

$$e_2 = K_2 E_m Sin 2 \omega t$$

$$e_3 = K_3 E_m Sin 3 \omega t$$

$$e = E_m \left(Sin \omega t + k_2 Sin 2 \omega t + k_3 Sin 3 \omega t \right)$$

$$P = \frac{E_m^2 1 + E_m^2 2 + E_m^2 3 + \dots + E_m^2 N}{2R}$$

$$P = \left(I_m^2 + I_m^2 2 + I_m^2 3 + \dots + I_m^2 N\right) R$$

$$I = \sqrt{\frac{I_m^2 1 + I_m^2 2 + \dots + I_m^2 N}{2}}$$

$$E = \sqrt{\frac{E_m^2 1 + E_m^2 2 + \dots + E_m^2 N}{2}}$$

$$\cos \phi = \frac{I^2 R}{E I} = \frac{\frac{E^2}{R}}{E I}$$

TRANSFORMATORS

$$\eta = \frac{S \cos \phi}{S \cos \phi + Po + Psc}$$

TRANSFORMERS

Enige waarde van belasting by k van vollas

Any value of load at k of full-load

$$\eta = \frac{k S Cos \phi}{k S Cos \phi + Po + k^2 Psc}$$

MAKSIMUM RENDEMENT

$$K = \sqrt{\frac{Po}{Psc}}$$

MAXIMUM EFFICIENCY

$$\eta = \frac{k \ S \ Cos \ \phi}{k \ S \ Cos \ \phi + Po + k^2 \ Psc}$$

INDUKSIEMOTOR

INDUCTION MOTOR

$$\frac{Eo}{V_1} = \frac{Zr}{Z_s}$$

$$E_2 = SEo$$

$$X_2 = SXo$$

$$I_2 = \frac{E_2}{Z_2}$$

$$Z_2 = \sqrt{R_2^2 + \left(SXo\right)^2}$$

$$Io = \frac{Eo}{Zo}$$

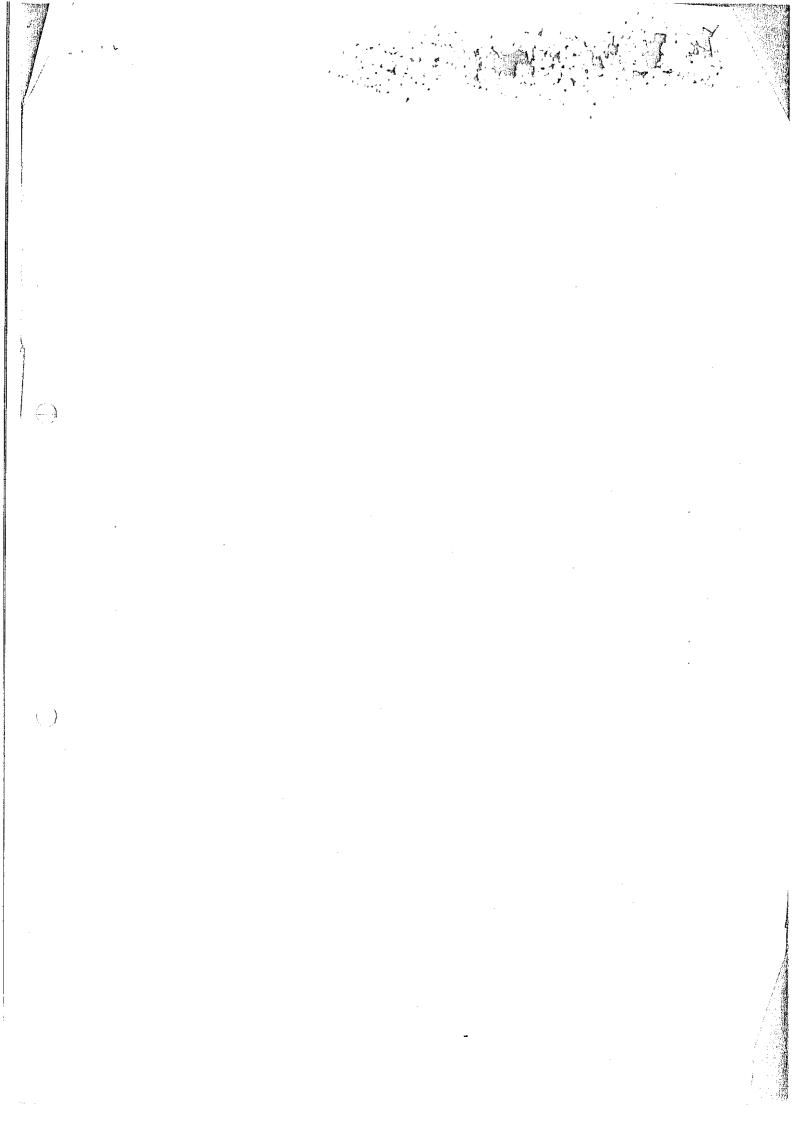
$$Zo = \sqrt{R_2^2 + Xo^2}$$

$$I_2 = \frac{SEo}{\sqrt{R_2^2 + (SXo)^2}}$$

$$Io = \frac{Eo}{\sqrt{R_2^2 + Xo^2}}$$

MAKSIMUM RENDEMENT

MAXIMUM EFFICIENCY


$$R_2 = SXo$$

Rotorkoperverlies = S rotorinset Rotor copper loss = S rotor input

$$S = \frac{N_1 - N_2}{N_1}$$

$$P = \sqrt{3} \ V_L \ I_L \ Cos \ \phi$$

$$KVA = \sqrt{3} V_L I_L$$

